H=-16t^2+32+20

Simple and best practice solution for H=-16t^2+32+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+32+20 equation:



=-16H^2+32+20
We move all terms to the left:
-(-16H^2+32+20)=0
We get rid of parentheses
16H^2-32-20=0
We add all the numbers together, and all the variables
16H^2-52=0
a = 16; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·16·(-52)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{13}}{2*16}=\frac{0-16\sqrt{13}}{32} =-\frac{16\sqrt{13}}{32} =-\frac{\sqrt{13}}{2} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{13}}{2*16}=\frac{0+16\sqrt{13}}{32} =\frac{16\sqrt{13}}{32} =\frac{\sqrt{13}}{2} $

See similar equations:

| 14-2yy=8 | | 8-3n=8 | | Y=-7x=350 | | 3x=3,84 | | b*12=84 | | (18÷y)+10= | | -71=9-8y | | 2+5(3x+2)=4(6x+4)-4 | | Y=4x+450 | | 5(v-2)=30 | | -8=v/9-1 | | 4(x+1)=29 | | 7-9w=25 | | -1/3x+1=-4 | | 2(2x-5)+2x=120 | | (9x+-18)=72 | | 9x+-18=120 | | Y=x+750 | | 1^x=1.05 | | (15÷5+6+9)×4×2+7=a | | 6/4x+12=12x+27-3x | | 10z2+1z−2=0. | | 5(6x-10)+40=80 | | Y=4x+600 | | 7-2x+6-5x-2-x=15-6(5-8x)-9x | | 10z^2+1z−2=0 | | 5+2x-1=10 | | (x+8)=86 | | 13+b=(11) | | (x+8)°=86° | | 4+16x+16x2=0 | | 8x-37=2x-5=180 |

Equations solver categories